Soft sensor method for endpoint carbon content and temperature of BOF based on multi-cluster dynamic adaptive selection ensemble learning

نویسندگان

چکیده

Abstract The accurate control of the endpoint in converter steelmaking is great significance and value for energy saving, emission reduction, steel quality improvement. key to lies accurately predicting carbon content temperature. Converter a dynamic process with large fluctuation samples, traditional ensemble learning methods ignore differences among query samples use all sub-models predict. different performances each sub-model lead performance degradation learning. To address this issue, we propose soft sensor method based on multi-cluster adaptive selection (MC-DAS) temperature prediction. First, ensure diversity base model, clustering algorithm data partition characteristics construct pool diverse models. Second, model strategy proposed, which involves constructing similarity regions individual assessing model’s these identify most suitable weight combination respective sample. Compared method, simulation results actual show that prediction accuracy within ±0.02% error range reaches 92.8%, ±10°C 91.6%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Cluster Ensemble Selection

Cluster ensembles generate a large number of different clustering solutions and combine them into a more robust and accurate consensus clustering. On forming the ensembles, the literature has suggested that higher diversity among ensemble members produces higher performance gain. In contrast, some studies also indicated that medium diversity leads to the best performing ensembles. Such contradi...

متن کامل

Soft Sensor Based on Adaptive Local Learning

When it comes to application of computational learning techniques in practical scenarios, like for example adaptive inferential control, it is often difficult to apply the state-of-the-art techniques in a straight forward manner and usually some effort has to be dedicated to tuning either the data, in a form of data pre-processing, or the modelling techniques, in form of optimal parameter searc...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: High Temperature Materials and Processes

سال: 2023

ISSN: ['0334-6455', '2191-0324']

DOI: https://doi.org/10.1515/htmp-2022-0287